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I. Introduction 
 
The Domain Name System (DNS) is a hierarchical database distributed around the world 
whose primary function is to translate human-readable domain names to numerical IP 
addresses for network lookup and communication. The current system was designed in 
1984 by Paul Mockapetris to eliminate scalability problems that had become apparent 
with the previous name-to-IP mapping scheme, which involved maintenance of a single 
hosts file distributed to end hosts periodically. A vast improvement to its predecessor, 
DNS is well suited to its task of maintaining a relatively efficient, distributed set of name-
to-IP mappings, but unfortunately leaves something to be desired in terms of security. 
 
DNS is a critical part of everyday Internet usage required by anyone who has ever 
checked email through their provider, surfed to a website, or used a chat application to 
discuss the latest happenings with friends or family. Despite its relative invisibility to the 
common user, DNS is a service that most every networked application depends on dearly. 
This being the case, it is an obvious target for manipulation by malicious users. It is also 
particularly susceptible to compromise due to the following reasons: 
 

- DNS uses the connectionless User Datagram Protocol (UDP) to convey 
information from authoritative servers to clients instead of its connection-oriented 
counterpart, TCP. This decision was made for a number of legitimate reasons, but 
in terms of security, it makes requests particularly susceptible to hijacking, and 
responses easy to spoof, as it is not subjected to the three-way handshake that is 
required to set up a TCP connection. 

- To make lookups quick and save on unnecessary bandwidth, name servers are 
designed to cache results for future client lookups for as long as the Time To Live 
(TTL) field of the cached resource record (RR) specifies. This means that the 
system is a potential target for cache poisoning, which can lead to the propagation 
of falsified information as we shall see in the following discussion. 

 
A Fully Qualified Domain Name (FQDN) for a networked computer system provides a 
way to reach that system without the human user having to be aware of its IP address. 
This, in some ways, is similar to a title that you might have at a job. If someone sends a 
package to the CEO of XYZ Corporation, it is a way for them to send a package to the 
attention of the right person without having to know their particular name (which might 
legitimately change from time to time, by the way). DNS then, provides a sort of lookup 
service analogous to a duty that your receptionist at work might perform. If someone 
calls the office and doesn’t know your name or phone number directly, they can talk to 
the receptionist who can put them in touch with you, simply by asking for the person 
responsible for a particular duty or department. 
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We can also extend this analogy to reflect some of the problems inherent with DNS. 
Since the receptionist in this case doesn’t require any sort of validation that you are who 
you say you are, it’s possible that someone in your office might introduce themselves to 
your receptionist one day as the new CEO and tell them that from now on, all calls and 
packages going to the CEO should be delivered to their office. The receptionist in our 
example, being naïve and having no reason to doubt the authenticity of the imposter’s 
claim, would then go ahead and start directing incoming calls and packages to them. This 
is obviously dangerous for a number of reasons and is useful in illustrating that the large 
majority of name servers on the Internet are altogether too trusting and don’t support a 
full suite of authentication protocols to verify the identity of the receiving party (or the 
integrity of the data they are communicating). 
 
In this paper we shall examine some of the most basic threats to the domain name system 
as it exists today, and make suggestions where possible to reflect best practices that 
should be observed to eliminate, or at worst, lessen the impact of potential threats. We 
limit our discussion to solutions that reflect relatively simple changes that administrators 
can make without drastically overhauling their existing infrastructure, although we touch 
briefly on DNSSEC and next-generation solutions merely to note that they exist. 
 
We will not focus on implementation problems with particular instances of DNS 
servers/daemons but instead spend our time discussing practical security threats inherent 
to the architecture itself. Accordingly, we will leave exploitation of buffer overflow 
vulnerabilities in certain versions of a very popular name server daemon out of scope for 
this discussion. Such security hazards are extremely well documented elsewhere. 
 
Additionally, we endeavor to be as implementation-agnostic as possible and keep the 
discussion relatively high-level, although BIND (The Berkeley Internet Name Domain, 
the most common UNIX-based DNS server package) configuration examples will be 
cited to illustrate concepts where necessary. Before we discuss in-depth the security 
hazards that plague the DNS, we will first give a brief overview of how name lookups are 
performed which will be critical to understanding how and why DNS is vulnerable to 
certain attacks. 
 

II. A Brief Architectural Overview of DNS 
 
Namespace in DNS is organized in a hierarchical tree structure, with the root DNS 
servers at the top of the tree. These root servers contain information about the DNS 
servers at the next level down the hierarchy, which include the Top Level Domain (TLD) 
DNS servers for .com, .net, .org, and many other top-level domains. Going down the 
hierarchy another level we find DNS servers for individual corporations, networks, and 
organizations. It is these systems that we concern ourselves with for the majority of this 
discussion, although the points we mention are general observations about the 
architecture of the domain name system and therefore apply at every level. At these 
servers we find information about individual hosts as well as potentially lower-level DNS 
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servers that may perform the same delegated function for sub-domains of these 
organizations (e.g., a host www may exist in the sub-domain accounting.xyzcorp.com). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: DNS Namespace Hierarchy 

 
The process by which client programs search the DNS hierarchy for information about a 
given host is referred to as resolving. In our example, DNS will be used by a client 
application (a web browser) in the userspace.org domain to resolve the FQDN 
www.xyzcorp.com to an IP address (e.g. 192.168.5.250), which it can then use to contact 
the server and retrieve the requested web pages. We should note that the client system 
first checks a local cache to see if it already knows the IP address associated with this 
name. In our case, it does not, so the system formulates a DNS request to its configured 
(usually local) DNS server, asking for the IP address associated with www.xyzcorp.com. 
 
Since our local name server is not authoritative for the domain in question and does not 
have this information already cached from a previous lookup, it will resolve the name 
recursively. This is done by systematically querying various servers in the DNS hierarchy 
to find the information requested by the client. In this case, our local server would end up 
talking to the root server (located using root hints), which would point us to the TLD 
server for the “.com” domain, which would in turn point us to a name server authoritative 
for the xyzcorp.com domain. 
 
Zone information for a particular domain is always stored on a primary name server for 
that domain. A zone may also have additional name servers, called secondary name 
servers, which maintain a mirror of this information for redundancy (and efficiency), 
which are also authoritative. In this case it doesn’t really matter which of these name 
servers is selected, as long as the server is authoritative for the zone data, and we shall 
say that the selected name server here is ns.xyzcorp.com. Finally, ns.xyzcorp.com sends 
ns.userspace.org the information we have requested about www and ns.userspace.org can 
then pass this on by sending a reply to our client application. At this stage, our client 
application can access the website by its numerical IP address, transparently to the user. 
 

.com 

. (root)

.net .org

abc.com xyz.com 

subdom.xyz.comhosts in xyz.com

hosts in subdom.xyz.com
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Figure 2: DNS Lookup Process for Example Case 
 
It is important to note that, for performance optimizations, ns.userspace.org will cache the 
entries it receives at each step of the process for future lookups. The next time a user in 
our domain attempts to access www.xyzcorp.com, ns.userspace.org will be able to supply 
the IP address for it immediately without repeating the same access pattern, as long as the 
TTL of www.xyzcorp.com’s RR has yet to expire. 
 
In the above example, we are assuming that the local DNS server is configured as a 
recursive resolver. Queries can be either recursive or iterative by nature. In recursive 
resolution, the name server has to answer either with a response to the query or an error. 
Since the server in our example is not authoritative for the data being requested, it has to 
itself resolve the query again (as shown) before delivering an answer. Once the name 
server eventually locates the authoritative source for the data it is seeking and obtains 
either an answer or an error, it passes this response along to the requesting client. 
Iterative resolution, on the other hand, is when the server simply returns the best answer 
it has at the moment. Therefore, if it is authoritative it will return a response for the 
query, and if it is not, it will return a referral to another name server that would help the 
resolver continue the resolution process, placing the burden on the client. The DNS root 
servers, for instance, are configured to only respond to iterative requests because of the 
large volume of queries they receive. 
 

1: Client (resolver) in userspace.org 
asks its local name server 
(ns.userspace.org) for the address of 
www.xyzcorp.com 
2: Name server does not have any 
information about this address in 
local cache, contacts root server with 
an iterative request 
3: Root server returns “best effort” 
address of .com top-level domain 
server to help continue the resolution 
process 
4: Name server contacts TLD name 
server with an iterative request 
5: TLD name server returns the 
address of ns.xyzcorp.com, which its 
authoritative for the requested zone 
6: Name server contacts 
ns.xyzcorp.com with an iterative 
request for www 
7: ns.xyzcorp.com returns an 
authoritative answer mapping 
www.xyzcorp.com to an IP address 
8: Name server returns this answer 
to the requesting resolver 



 - 5 - 

Note that we have intentionally glossed over some important aspects of DNS in this 
example (such as the reasoning for providing multiple secondary servers, glue fetching, 
etc) because it is not necessarily critical to the discussion that follows. For a full 
description of the intricacies of the DNS protocol, the reader should refer to RFC 1034 
and 1035 (and their numerous updates). 
 

III. Zone Transfers and Name-Based Reconnaissance 
 
A zone transfer is an answer to a DNS query to list all DNS information. This includes 
name servers (NS), host names (A), aliases (CNAME), mail exchangers (MX), start of 
authority records (SOA), pointer records (PTR), and so on. This also includes the zone 
serial number, TTL information, and other data associated with name resolution for a 
domain. Zone transfers are the defined mechanism for mirroring this data between 
primary (master) and secondary (slave) servers authoritative for a particular domain. 
Slave servers routinely poll the master to update their zone data, in order to stay current. 
 
Additionally, a zone transfer can also be requested from a regular host to look up 
information for the entire domain. In fact, the default behavior of most name server 
packages allows any host to request and receive a full zone transfer. This is usually one 
of the first actions undertaken by an attacker when determining entry points into a target 
network, because it allows them to see a complete picture of named systems and clues to 
network services available to them in a domain. From there, they can scan or probe 
individual services on hosts and gather information that may be useful in an attack such 
as the web server name, platform, and version, the type of name server daemon running 
on your authoritative servers, and so on. Going back to our receptionist analogy, it is 
similar to a malicious party calling the front desk and asking for a full listing of all the 
names, titles, offices, and phone numbers of all employees in your company. The caller 
also hopes that the receptionist might make mention of what someone’s favorite sport is, 
their children’s names, or the time they normally leave for lunch. 
 
In a typical configuration, the primary server is configured to only allow the addresses of 
secondary servers to retrieve the zone file from it. Often, however, even these basic 
address-based authentication mechanisms are not provided and any user can grab the 
complete zone file for a particular domain using a tool like dig, which can trigger a zone 
transfer and retrieve this information using its AXFR function as in the following 
example:  
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; <<>> DiG 8.3 <<>> @192.168.10.10 localtestnet.com axfr
; (1 server found)
$ORIGIN localtestnet.com.
@ 2H IN SOA ns1 root (

2004012383 ; serial
2H ; refresh
1H ; retry
3D ; expiry
2H ) ; minimum

2H IN NS ns1
2H IN A 192.168.10.10
2H IN MX 10 mail

angel 2H IN A 192.168.10.54
2H IN HINFO "Solaris" "2.7"

dastun 2H IN A 192.168.10.107
dominus 2H IN A 192.168.10.200
mail 2H IN CNAME angel
orion 2H IN A 192.168.10.60
rd 2H IN A 192.168.10.250

2H IN TXT "admin" "desktop"
rosewater 2H IN A 192.168.10.24
schwartzwald 2H IN A 192.168.10.80

2H IN HINFO "Windows" "WWW/FTP Server"
tuxweb 2H IN A 192.168.10.199

2H IN HINFO "RedHat" "testing pre-deployment"
wopr 2H IN A 192.168.10.215 

 
Figure 3: Dig Command Output for Sample Domain 

 
Of course, advertising a complete directory service for every single host in a network is 
dangerous, but more dangerous still is when a domain is configured with more 
information than is even required to perform basic resolution. Sometimes hosts are 
named after people or ongoing projects, which are useful to attackers in determining the 
purpose of a system. Particularly interesting may be names of systems including the 
words “test”, “unstable”, or “development”. Sometimes, as seen above, administrators 
add TXT and HINFO record types that aren’t intended to be seen by outsiders. These 
records could give away information about a host that would be useful in the hands of a 
malicious party, such as the operating system type, hardware platform of a particular host 
or other sensitive information (e.g., “Administrator Desktop”). 
 
As we have seen, failing to limit the retrieval of zone transfers allows a malicious party to 
perform name-based reconnaissance with great ease. This serves as a first step to gaining 
information about a target network, and often leads to more in-depth scanning of what the 
attacker may perceive to be interesting targets. If it’s possible to limit the dissemination 
of this data to only those who need to be “in the know” (our slave servers) then it is 
advisable to do so. We shall see how to limit access to this information later on, and how 
to better structure domains to expose less information to the public. 
 
Before moving on, we also note also that an attacker spoofing the IP address of a master 
server authoritative for a domain could potentially spoof a zone transfer to one of its 
slaves if access to updates is not restricted by something stronger than IP-based 
authentication. Through this means an attacker could load a slave name server with false 
information about a domain it is supposed to be serving authoritative information for. 
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Before we’re finished we will discuss mechanisms for ensuring the identity of foreign 
servers during the zone transfer process and verifying the integrity of the data that is sent. 
 

IV. Simple DNS Denial of Service Techniques 
 
Like all Internet resources, DNS servers are vulnerable to denial of service (DoS) attacks. 
If a large number of DNS queries are sent to one or more DNS servers on a network from 
spoofed sources, a denial of service condition may result where the server’s network 
uplink becomes congested or the DNS server response time becomes severely degraded. 
Although this particular DoS is little different in its effect than a simple ping flood, it is 
notable because DNS query traffic cannot be traffic-shaped by routers in the same 
fashion as ICMP traffic without severely inconveniencing legitimate users of the service. 
 
More dangerously, DNS servers can be used for amplification of attack traffic (similar to 
the way in which a Smurf attack works) if we can create small request packets that 
generate large responses from the queried server. An obvious example of a small request 
/ large reply packet pair is a request for a zone transfer. Assuming that the name server 
allows zone transfers from just about anyone, an attacker could spoof a large number of 
small zone transfer requests using source addresses on a specific victim network. The 
DNS server will then amplify the traffic sent to it as it returns the significantly larger 
zone-transfer reply packets to the alleged requestor. 
 
The nature of recursive lookups may also lead to another potential DoS condition. 
Consider sending a large number of requests for domains guaranteed not to be cached at a 
particular name server (again, from spoofed sources). For each small query packet sent, 
the resolving name server will have to perform at least one recursive lookup per packet. 
This could lead to severe service degradation if a coordinated attack could be launched 
from numerous sources in a Distributed Denial of Service (DDoS) scenario. 
 
Note that these attacks are general Denial of Service techniques and are not related to the 
implementation-specific DoS attacks (BIND, etc) that have been discovered over the past 
few years. 
 

V. Local Query Interception and Response Spoofing (DNS Hijacking) 
 
If a malicious party is in a situation where they can see DNS queries on the network 
being sent by clients to a DNS server, then there exists the possibility that the attacker 
can intercept the queries and beat the name server’s response by sending a spoofed 
response with their own information. This attack results in a race condition but the odds 
are usually in the attacker’s favor if he resides on the same LAN as the victim (which is 
the case with most attacks of this sort), because the legitimate server may not be on the 
same LAN or may need to perform a number of recursive queries to return a result, which 
will slow it down considerably.  
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Numerous tools have been created that allow for DNS Hijacking of this sort, including 
DNSSpoof from Dug Song’s popular DSniff suite. A DNS Spoofer is a small application 
that runs on a host and looks for DNS queries on a given interface. It reads data from a 
fabricated hosts table (formatted like the /etc/hosts file familiar to UNIX administrators), 
which contains entries for each destination that the spoofer hopes to redirect. Whenever a 
query is discovered that asks for an address associated with one of the hosts listed in this 
table, the spoofer is capable of quickly crafting a reply and returning it to the victim. 

 
 
 

Figure 4: Local DNS Hijacking Scenario 
 
Since DNS uses UDP as its primary communication mechanism rather than a connection-
oriented protocol like TCP, it is designed to use a field in the message header called the 
Transaction ID in order to establish orderly communication between the client resolver 
and name sever. When the DNS server receives a query for a particular bit of information 
with a Transaction ID of 1674, it will do what it needs to in order to retrieve the 
requested data and then send a DNS reply to the originator of the query with the original 
Transaction ID of 1674. Each connection pair it establishes in order to discover this data 
is assigned its own Transaction ID, and it may have to respond to other requests while 
awaiting replies. 
 
In the case of DNS Hijacking we assume total knowledge of the DNS query, including 
the Transaction ID, since we can physically see the packet on the wire. Therefore, it is a 
simple matter to craft a reply with exactly the same characteristics that a legitimate name 
server would, but include an IP address mapping from our own malicious hosts table. 
Note that if the LAN that the hosts reside on is switched, ARP spoofing techniques 
(described elsewhere) could be used to intercept the traffic being generated by the victim. 
 
As long as the spoofed reply arrives before the legitimate reply, it will be trusted by the 
resolver, used for the current connection, and cached locally. When the legitimate reply 
arrives, it will be discarded. 
 
The existence of a local DNS spoofer as described above can be used to set up various 
scenarios including malicious site redirection, denial of service, and man-in-the-middle, 
all of which will be discussed shortly. 

1: Client sends query to name server 
2: Attacker intercepts query and looks up 
name in fake hosts file 
3: If a matching entry exists, attacker 
spoofs response to client, beating 
legitimate answer 
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VI. DNS Cache Poisoning 
 
A slightly more complicated attack, but one which is much more dangerous because of 
the fact the attacker doesn’t have to be positioned near the vulnerable name server to 
observe the replies, is the case of DNS Cache Poisoning. In this scenario the attacker 
would like to convince a legitimate DNS server for a given domain to cache falsified 
information about a foreign domain that they supply.  
 
As mentioned, DNS uses the Transaction ID in the DNS message header to establish a 
sense of order amongst queries. So, in order to convince a name server to accept falsified 
data as legitimate, we must be able to predict the ID that will be used to fetch information 
about a particular host. This is the key to spoofing an authoritative name server’s reply. 
 
The attacker host begins by asking the authoritative name server for xyzcorp.com to 
resolve a host on his own (attackerspace.org) domain. We assume that the attacker’s 
name server is ns.attackerspace.org and that the attacker can monitor the packets sent-
to/received-by that system. The victim name server, which we assume is configured to be 
a recursive resolver, will look up the authoritative name server for attacker.net in the 
DNS hierarchy as shown below and then send a query to ns.attackerspace.org asking to 
resolve the host named www in that network. The attacker’s name server will respond in 
the usual manner. 
 

 
 

Figure 5: Retrieval of Recursive Query Information including Transaction ID 
 
The attacker can now examine the Transaction ID that was exchanged with the data for 
www and may be able to use this for predicting a future Transaction ID. Older versions 
of BIND (unpatched versions of 4.9) and the Windows NT DNS Server used sequential 
Transaction IDs. This oversight would allow an attacking spoofer program running on 
ns.attackerspace.org to observe the previous Transaction ID as discussed and then set the 

1: Attacker sends legitimate query for 
www.attackerspace.org to victim 
name server (NS) 
2: Victim NS doesn’t have an answer 
so it locates the authoritative server 
at ns.attackerspace.org (this process 
omitted from diagram) and queries it 
(Transaction ID = 1674) 
3: Attacker name server sends the 
reply. Attacker notes Transaction ID 
(1674) and will next send other 
requests to observe how the ID 
increments (sequentially, pseudo-
randomly, etc) 
4: Victim NS returns this information 
to the requesting attacker client
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attacker up to immediately send subsequent requests for domains they wish to spoof 
while simultaneously sending fake replies with incremental Transaction IDs. The result is 
once again a race condition between the legitimate host (whom the victim name server 
will of course be sending legitimate queries to) and the spoofed one. In most cases, it 
should be trivial to “beat” the legitimate query.  
 
Once the victim name server’s cache is poisoned with the falsified entry, any number of 
the techniques described in the following section may be employed to redirect traffic or 
cause denial of service conditions for clients using that server as a resolver and 
attempting to access the poisoned site. In the example scenario shown in Figure 6, the 
attacker is using the poisoned cache to redirect clients on the victim network to an 
imposter website under their control.  
 

 
 

Figure 6: DNS Cache Poisoning Attack with Sequential Transaction IDs 
 
The sequential Transaction ID problem was fixed and current versions of BIND use 
randomized values. However, the challenge for cache poisoning remains the same: if the 
Transaction ID is predictable and the server is externally available and recursive, the 
cache on the server can be poisoned. 
 
Versions of BIND 4 and 8 were also later found to be vulnerable to DNS cache poisoning 
that worked in a slightly different manner. The implementation flaw was that BIND 
would send multiple recursive queries for the same domain at the same time if queried for 
them. This quirk made the daemon vulnerable to cache poisoning by exploiting the 

1: Attacker sends query for 
www.mybank.com to victim NS 
2: Victim doesn’t have an answer so 
it locates the authoritative server at 
ns.mybank.com and asks it 
3: Attacker immediately sends a 
spoofed reply from ns.mybank.com 
using an incremented Transaction ID 
from a previous session (sequential 
IDs assumed). Response includes a 
mapping of the requested host to an 
attacker-controlled IP address 
4: Victim receives response from 
ns.mybank.com but discards it 
5: Victim replies to original query with 
the attacker-supplied address 
6: At some later time, a client that 
uses Victim NS for resolution will 
query for www.mybank.com 
7: Response will be the poisoned 
cache entry (attacker IP), which 
might host a replica site the attacker 
uses to steal login information 
8: Client logs in to replica site, under 
the belief that it is the legitimate web 
host… 
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birthday paradox (not really a paradox, but a noteworthy statistical fact that says that in a 
group of 23 people, the chances of at least two people having the same birthday is over 
50%), a technique discussed in Joseph Stewart’s paper, “DNS Cache Poisoning – The 
Next Generation”. BIND 9 is not affected by this problem. 
 
Intuitively, any technique that allows Transaction ID numbers to be predicted in a flawed 
implementation of a name server will result in this kind of vulnerability. At this time, 
BIND 9 and D.J. Bernstein’s TinyDNS (another popular UNIX name daemon) are not 
known to be vulnerable to any specific techniques of this sort. Of course, this does not 
keep cache poisoning from being possible. With only 16 bits of space reserved in the 
DNS message format for the Transaction ID, other techniques may be possible, including 
simple random guesses (given that there are only 65536 possible values). This obstacle is 
similar to the difficulty of predicting TCP Sequence Numbers except much more feasible 
since TCP reserves more space (32 bits) for the Sequence Number field than DNS does. 
 

VII. Follow-On (Enabling) Attacks 
 
As discussed above in the sections on DNS Hijacking and Cache Poisoning, there are 
numerous techniques to falsify DNS information to clients. Up until this point we have 
left the repercussions of these actions to the imagination of the reader, but it is perhaps 
more frightening and therefore illustrative to examine several situations that could arise if 
DNS information has been compromised: 

 
- The attacker could take the opportunity to “blackhole” the selected destination, 

pointing the client to an offline or nonexistent address and therefore performing 
an effective denial of service against both the requesting party as well as the 
service provider at the other end. 

- The attacker could redirect traffic to a hostile site configured to look like the 
legitimate server the user is trying to contact. For example, consider a scenario 
where a user’s online bank was redirected to a replica site constructed by an 
attacker. The hostile site could capture user login credentials and return an error 
that looks legitimate (“Temporarily out of service. Please try back later.”). This 
appears harmless enough but in reality the user’s login and password information 
are stolen. Later, when the cache entry expires, things return to normal and the 
user has had no indication that there login credentials were compromised. The 
replica website can even be set up to handle secure web transactions via SSL and 
provide users some sense of false security when conducting transactions (although 
the certificate may not look so legitimate if closely inspected). 

- The above scenario is also possible for services other than WWW, such as FTP. 
Not only could client uploads be lost or compromised, but the attacker could also 
potentially pose as a repository for system updates or vendor patches. While 
thinking that they’re downloading a new service patch, the victim could in 
actuality be downloading a trojaned program that will install as a service patch 
but actually grant the attacker access to their system once installed. 
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- A modification on the traffic redirection scheme would be where an attacker 
conducts a man-in-the-middle attack transparently proxying connections through 
to the real website. An example of this can be conducted with the DSniff suite’s 
DSNSpoof and WebMITM tools. Even SSL sites can be vulnerable to this, as the 
user will be handed the certificate of the intermediary rather than the certificate of 
the legitimate host. It might, of course, be noticeable that the certificate is self-
signed or signed by an untrusted authority, or that the connection is slightly 
slower than usual. However, depending on the user awareness level, this may not 
be enough to dissuade a casual user from proceeding as normal. Revisiting the 
online bank scenario, an attacker could proxy connections and serve as a man-in-
the-middle, capturing all the data exchanged between the client and the bank, 
including login information, etc, and would not even be forced to construct a 
replica site or return potentially suspicious error messages. 

- MX records are also susceptible to poisoning. Therefore, they can be changed to 
point a domain’s mail to some other (malicious) mail server, which can be 
configured to receive mail for that domain. All email for the target domain from 
the poisoned source network could then be redirected to the hostile mail server.  

- Many legacy applications rely on trust relationships built upon IP or name-based 
authentication. At one point in the history of digital communications, this seemed 
like a good idea to someone, but as of late it has fallen out of favor for obvious 
reasons. Any application which builds trust relationships based on weak IP-based 
authentication can be exploited through IP spoofing techniques (as described 
elsewhere, most notably in the number of articles describing the now-infamous 
Mitnick attack). Intuitively, applications that perform authentication based on 
DNS names are vulnerable to the same basic sort of problem. Examples of this 
include the UNIX rhosts suite of applications (RSH, RCP, etc). 

 
Those scenarios described above are but a sampling of the problems that could be caused 
by spoofed DNS responses or poisoned name caches. Other examples are left to the 
reader’s imagination.  
 
Next we shall examine a number of proactive preventative measures that DNS 
administrators can take to prevent these situations. 
 

VIII. Securely Structuring DNS Deployments (Split-Split Strategies) 
 
Many of the above problems can be completely eliminated by simply limiting certain 
resources to the hosts that require it. When installing DNS servers for an organization, a 
number of questions should be asked in order to determine how to limit these resources, 
such as: “Who and where are the hosts that will need to recursively resolve external DNS 
servers from our domain?”, “Do external hosts need to know about all of our named 
resources or only a select few?”, and so on. The answers to these questions lead us to 
split the DNS architecture up into different zones and different types of servers. Many 
organizations use the same DNS servers for all of these tasks, which leave them 
particularly vulnerable. 



 - 13 - 

 
Even if zone transfers are properly protected (see the next section), DNS can still expose 
the structure of an organization’s internal network to attackers. Hosts external to your 
network, for instance, most likely don’t need to know your corporate file server’s DNS 
name, although to internal SMB or NFS clients this bit of information may be critical. In 
order to advertise one set of hosts and services (web servers, email forwarders, etc) to the 
outside world and keep other hosts that still need names but do not require external 
visibility separate, we employ a technique often referred to as Split DNS. In order to do 
this, we maintain two different zones for the domain that are updated separately. 
 
Another type of “split” strategy (sometimes called “Split-Split”) that we can make use of 
is to explore the difference between the concept of an Advertising Name Server and a 
Resolving Name Server and note how we can separate these two functionalities to lessen 
the risk of cache poisoning-type attacks. For this purpose, we shall define the concept of 
an Advertising Name Server as an externally accessible name server that is authoritative 
for our domain and a Resolving Name Server as a server that clients (presumably only 
from our domain) will use to resolve names and cache information for domains that are 
not managed locally (ones we are not authoritative for). 
 
Obviously, an advertising name server needs to be externally accessible in order to be 
any good; other servers need to know how to find out information about our domain 
through it using their resolvers, just like our resolvers will depend on the existence of 
externally available advertising servers for other domains. However, most organizations 
don’t need a resolving name server to be externally accessible because they only care 
about assisting clients in their own domains that need to look up DNS data. Not only does 
externalizing the resolving server make it susceptible to attack but it also further burdens 
the name server with legitimate queries that they would rather not be servicing. It’s wise, 
in most cases, to take every precaution to ensure that internal systems get the most 
reliable, correct, and best possible service rather than spending valuable CPU cycles tied 
up handling requests from other (external) parties whom we owe no allegiance. 
 
With this split architecture in mind, an advertising name server (that only resolves 
requests for zones that it is authoritative for) can be deployed external to the organization, 
and a resolving server can be set up internally that only handles requests from local 
clients and does lookups on external domains. This architecture makes the external server 
much less susceptible to attack because it never has to look up information about another 
zone and therefore doesn’t have to have any cache for that information or level of trust 
for other servers. It also protects the internal resolving server by placing it behind a 
firewall and removing it from the view of intruders who are non-local. However, it is of 
course still vulnerable to attacks from internal sources. Resolving servers are by nature 
more susceptible to attack than the external advertising server, because they need to 
accept (and presumably, cache) data from other DNS servers and therefore require a 
higher level of trust with the parties from whom it will request information. 
 
To prevent the advertising name server from resolving requests, recursion must be 
disabled, which puts the name server into passive mode, instructing it to never forward or 
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send queries on behalf of other resolvers. A non-recursive server is obviously much more 
difficult to manipulate since it doesn’t send queries and therefore doesn’t cache any. In 
BIND 9, recursion can be disabled by adding a “recursion no” substatement inside an 
options block. This can be done for a specific zone or for global options, depending on 
the purpose of the name server. We will demonstrate example configurations for both 
types of servers below: 
 

 
If recursion cannot be disabled entirely in a particular situation, it is useful to at least 
limit the range of addresses able to utilize this functionality or the names of zones they 
can ask about. This can be specified in BIND 9 by using the allow-recursion 
substatement in an options block as such:  
 
Allow-recursion { 192.168.1.0/24; localhost; }; 
 
Limiting recursion to internal/local sources significantly reduces the risk of cache 
poisoning attacks if it is not feasible to disable recursion entirely. 
 

IX. Access Lists and Transaction Signatures for Zone Transfers 
 
Another one of the recurring problems in our discussion of DNS security is that there is 
no authentication method to ensure that the reply a resolver (be it a client or a resolving 
name server) receives from another name server is guaranteed to actually be from that 
source and/or have correct data. It seems that just about anyone could craft a reply to a 
DNS query that would be treated as valid by the querying party as long as they could see 
the request itself or at least predict the Transaction ID associated with it. The fact that 
DNS caches information in order to improve response times for oft-queried domains 
compounds the problem but is necessary for efficiency reasons. 

acl internal { 192.168.2.0/24; }; 
options { 
 directory “/var/named”; 
 allow-query { internal; }; 
}; 
zone “.” { 
 type hint; 
 file “db.cache”; 
}; 
zone “xyzcorp.com” { 
 type slave; 
 masters { 192.168.1.5; }; 
 file “db.xyzcorp.com”; 
 allow-transfer { internal; }; 
}; 
 

Figure 8: Resolving Server (Internal) 

acl slaves { 192.168.1.10, 192.168.2.5; };
options { 
 directory “/var/named”; 
 recursion no; 
 allow-query { any; }; 
}; 
zone “xyzcorp.com” { 
 type master; 
 file “db.xyzcorp.com”; 
 allow-transfer { slaves; }; 
}; 
 
 
 
 
 

Figure 7: Advertising Server (External)
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To restrict foreign access to zone transfers, most name servers can be configured to allow 
transfers only from specified servers. BIND, for instance, supports an access control list 
feature which can be used for this purpose. The basic format is:  
 
Allow-transfer { 192.168.1.10; }; 
 
Where 192.168.1.10 is a secondary name server for our domain. This can be specified 
inside of the global options or specifically for each zone handled by the server if there are 
more than one. 
 
Note that this weak form of authentication is based solely on IP source address, and 
therefore it does not address IP spoofing problems. Thus, it could be argued that this 
mechanism is relatively insecure. For example, consider a slaved secondary name server 
for a domain that retrieves zone data from a master primary name server by means of this 
IP-based authentication scheme. If an attacker is able to spoof the IP address of the 
master (this involves spoofing a TCP connection), they could potentially supply falsified 
zone data to the slave, which would then serve it to clients. This is therefore a less than 
ideal mechanism to control access. 
 
Although this is certainly better than nothing, a superior solution in this case is to use 
Transaction Signatures (TSIG). TSIG, as defined in RFC 2845, is a more secure method 
of access control that uses a shared secret key and a one-way hash function (only HMAC-
MD5 is supported at present, which requires as input both the message as well as the 
secret key) to establish trust between two name servers and authenticate the DNS 
messages that are exchanged. TSIG is most often used to authenticate the zone transfers 
that occur between primary (master) and secondary (slave) name servers authoritative for 
a particular domain. It can also be used between a DHCP server and a DNS server to 
secure the dynamic update process if this is configured (although we avoid the topic of 
dynamic updates in this paper, we acknowledge that they are in common use). 
 
A DNS server configured to use TSIG adds an additional TSIG resource record to the 
DNS data section of a message. This record is not actually part of the zone itself, but is 
used as a signature to verify the authenticity of the message when it is received. As such, 
the TSIG RR is not cached by the recipient. Successful verification of the signature 
proves to the receiving party that the sender had the shared key it was expecting and 
therefore no changes were made to the record while in transit, as any changes would have 
altered the result and failed the verification process. Therefore, we can trust the data we 
have received. 
 
To demonstrate how this works, we consider the scenario where a slave server requests a 
zone transfer from its master. The slave will sign the request it sends with the shared key 
it is configured to use when corresponding with that system. The master will verify the 
key and if the request is deemed valid it will sign its answer with the same shared key and 
send it back. If the signature shows the message to be invalid or tampered with, the 
request will be rejected. When the slave receives its answer, a similar process takes place. 
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The benefit of this is that it restricts zone transfers to only those hosts configured with 
valid DNS TSIG keys, meaning that each DNS query and response can be verified as 
coming from a legitimate source with valid TSIG keys.  
 
To conclude our illustration of the use of TSIG, we include two excerpts from BIND 9 
configurations. The left listing reflects the configuration of a master server that needs to 
support TSIG transactions with a slave, which is listed on the right. The key they share 
for this purpose is ns1-ns2.tsigkey. 
 

 
In BIND, TSIG keys can be generated by the dnskeygen utility and distributed to the 
remote host out of band or using TKEY (RFC 2930), a mechanism that allows hosts to 
generate a shared secret automatically using the Diffie-Hellman key exchange. It is 
recommended to configure unique keys between each pair of name servers that need to 
communicate in this manner, otherwise the compromise of a single key could have 
infrastructure-wide effects. 
 
We should also note that time synchronization is absolutely critical if TSIG is to be used. 
One of the fields in the TSIG record is time, which was added to prevent replay attacks 
after a certain expiration time. Therefore a Network Time Protocol (NTP) source must be 
available at all times to both servers in order to avoid rejection of messages due to time 
expiration. 
 

X. General Suggestions for Improving DNS Site Security 
 
In addition to the strategies above, there are a number of other very general suggestions 
that should be taken under consideration in order to improve the security of your 
organization’s DNS. We list some of them here: 
 

key ns1-ns2.tsigkey. {
 algorithm hmac-md5; 
 secret “k2Pb7gEcbXg6ZosOqAbV8A==”; 
}; 
server 192.168.10.5 { 
 keys { ns1-ns2.tsigkey.; }; 
}; 
zone “xyzcorp.com” { 
 type slave; 
 file “bk.xyzcorp.com”; 
 allow-transfer { none; }; 
}; 
 

Figure 10: TSIG for Slave Name Server 

key ns1-ns2.tsigkey. { 
 algorithm hmac-md5; 
 secret “k2Pb7gEcbXg6ZosOqAbV8A==”; 
}; 
server 192.168.10.10 { 
 keys { ns1-ns2.tsigkey.; }; 
}; 
zone “xyzcorp.com” { 
 type master; 
 file “db.xyzcorp.com”; 
 allow-transfer { 192.168.10.10; }; 
}; 
 

Figure 9: TSIG for Master Name Server 
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- Configure the DNS server host to only respond on TCP/UDP 53 and no other 
ports in order to eliminate the possibility that an unrelated (and potentially 
unnecessary) service is exploited and used as a means to compromise DNS. 

- Additionally, TCP port 53 could be limited at the firewall to prohibit zone 
transfers outside the local network if this isn’t deemed necessary. This provides 
extra implicit protection, but actually violates the RFC because it specifies that 
DNS messages larger than 512 bytes must be sent via TCP. Although it is 
unlikely that anything but a zone transfer will generate a packet this large, it is a 
possibility. 

- Don’t run the server daemon as root in case there are undiscovered exploits 
existing in the listening process that could be used for an attacker to gain access to 
the host. Running the daemon in a chroot jail would further limit the amount of 
damage that could be caused. 

- To limit the effect of localized DoS attacks, make sure you have at least one 
secondary server configured for serving authoritative data for your domain. Often, 
it is advisable to have two or more secondary name servers located on physically 
disparate networks for any volume of lookups. 

- Remove unnecessary HINFO and TXT records from your zones. There is simply 
no convincing reason to include this information in DNS records, as they provide 
no additional functionality to DNS and there is no need to advertise more 
information about your machines than necessary. 

- Don’t allow dynamic updates to a zone. Although not discussed specifically in 
our paper, some DNS servers allow dynamic updates from DHCP servers as hosts 
come online. This has rather obvious implications for security, and if possible, 
should be avoided. If your organization requires the functionality, using an 
access-list to limit the hosts allowed to update it is highly advisable. 

 

XI. The Future? DNS Security Extensions (DNSSEC) 
 
DNSSEC is an extension to the original DNS protocol proposed in RFC 2535 (later 
updated in RFC 3007, 3008, and 3090) and aimed primarily at securing the client-server 
lookup portion of the resolution process. It allows the client to both authenticate the 
identity of the server as well as verify the integrity of the data it is receiving from that 
server using public key cryptography. 
 
The basic idea is that each zone is given a public/private key pair and every record in a 
zone file is signed with its private key, creating a SIG resource record. The zone’s public 
key is then stored in a KEY record. The authoritative name server will sign the data with 
its private key, thus allowing anyone to decrypt it using the public key retrieved from the 
server’s KEY RR. 
 
If fully implemented throughout the Internet, advocates claim that DNSSEC would be a 
truly elegant solution to most (if not all) of the problems plaguing the current protocol. 
Unfortunately, there are numerous obstacles standing in the way of its deployment and 
reasons why it has yet to become widespread. 
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DNSSEC raises many questions that at this time may not have clear-cut answers: How 
will TLD administrators sign public keys from a given domain in order to build a chain of 
trust? What happens if the root key (used to sign domains) or keys at the TLD level are 
compromised? What about key revocation and rollover? It is important to observe that 
the new system, like the current one, provides no defense against DoS attacks. 
Performance issues may also be prohibitive. Signed zones are significantly larger than 
their unsigned counterparts, given that the size of a signature dwarfs the size of the record 
it is signing. Not to mention that the signing and verifying operations take valuable CPU 
time and memory. 
 
Although (mostly) implemented in BIND 9 and successfully tested in workshop and test 
bed environments, DNSSEC has yet to be deployed in environments large enough to 
simulate its use on the global Internet. Most parties seem to agree that further 
modification and refinement is required before DNSSEC will be able to scale 
appropriately. Ultimately, the real test is global adoption involving not just the 
deployment of DNSSEC servers but also the disablement of the current “weak” crop of 
DNS servers, which makes the barriers standing in its way comparable to those of IPv6 or 
an SMTP replacement for secure (spam-proof) mail exchangers. In other words, don’t 
hold your breath. 
 
The above discussion does not do justice to the rich features and deployment concerns 
regarding the DNSSEC extensions, but we limit our discussion of the topic here in order 
to observe that it has yet to be successfully implemented on a wide-scale basis and 
therefore is not currently a practical solution that can be easily adopted by organizations 
to secure their existing DNS resources. 
 

XII. Conclusion 
 
The domain name system is an extremely critical service, one that every casual Internet 
user relies on for the most basic of network applications – whether they know it or not. 
This system of name resolution, however, having been established long before computer 
networks were considered for commerce-centric applications (and therefore long before 
the current crop of security hazards existed), is also plagued by a number of 
vulnerabilities that to this day are highly exploitable if certain precautions are not taken. 
 
The need for authentication during zone transfers and between resolving name servers 
and clients will eventually necessitate the widespread deployment of DNSSEC or a 
similar system, but until that day comes we must combat the existing problems in the 
most practical and efficient manner possible. For now there are a number of far simpler 
steps that administrators can implement in order to make DNS as secure as possible for 
our users. Many of the weaknesses described in this paper represent relatively “simple” 
problems that could be easily buttoned up if well-informed, security-conscious 
administrators were educated about them and trained to structure their network 
architecture to mitigate the risk of attack. While the previous sections describe current 



 - 19 - 

best practices that should be implemented where possible, further research will no doubt 
be required for more advanced architectures. 
 
Likewise, even the most casual Internet users generally take the security of DNS for 
granted and never think twice about it. These users need to learn that the bridge they are 
walking on may not be as fireproof as they at first thought! For example, not only should 
users note the difference between an HTTP and HTTPS connection when making an 
online purchase, but they should also be extra-careful to verify the integrity of a 
certificate they are handed, and to ensure that it comes from the expected source (instead 
of immediately clicking “yes”). This is merely one example, of course, and is far from a 
universal solution, but it is certainly a step in the right direction. 
 
Like it or not, the big picture is that DNS is at the foundation of many “secure” protocols, 
and it is important to note once again that the security of the entire system is only as 
strong as the weakest link. In many cases, the weakest link is DNS. Until a truly secure 
next-generation replacement is finally settled upon and deployed throughout the world 
(quite a task indeed!), the best weapon we have to combat these problems is education. 
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