
FastFlex (efflex)

(A New Fast and Flexible Cryptographic Function)

Ashish Sharma,
Army Institute of Technology, Pune, India 411015

Email: ashish.sharma.ait@gmail.com
Web site: http://fastflex.sourceforge.net

Abstract
FastFlex (pronounced efflex) is a New Cryptographic Function which can be used to construct Stream Ciphers, Hash
Functions, Message Authentication Codes and Block Ciphers which perform considerably well in both hardware and
software environments on Processors of varying word lengths. FastFlex uses a modified version of the Salsa20 [1] Hash
Function as its core, along with a 256:256 bit mapping generated using a 256*256 virtual s-box. FastFlex only uses 4
primitive operations, Word Additions, Word Rotations, Word Multiplications and Word XORs, which gives it speed and
flexibility. Furthermore Word Multiplications are used only in moderation where the advantages of using them outweigh
the slight speed penalty induced by using multiplications over additions and xor. Finally, the design of FastFlex allows
significant tradeoffs in Speed, Size and Security in both Hardware and Software. The cryptanalysis of FastFlex is in
progress and initial results have been very encouraging. The Soucre Code for the same may be downloaded at
http://fastflex.sourceforge.net

Keywords: Stream Cipher, Deterministic Random Number Generator, Hash Function, Keyed Hash, 192-bit key security

mailto:ashish.sharma.ait@gmail.com
http://www.ashishsharma.co.nr/

Contents

1 Introduction

2 FastFlex Design Goals

3 FastFlex Building Blocks
3.1 HashCore
3.2 SAN, 256:256 Bit Mapping

4 FastFlex Design Justifications

5 FastFlex Applications
5.1 FastStream192
5.2 FastHash256

6 WeakFlex
6.1 WeakFlex8
6.2 WeakStream48

7 Comparison with AES

8 Conclusions

9 Appendices

Definitions:

Constructions: Ciphers / Other Networks created using the
FastFlex Function at their core.

Word: Unless otherwise stated, a Word denotes a 32-bit
Word.

1 INTRODUCTION

Presented in this paper is FastFlex, a New Fast and Flexible
Cryptographic Function. FastFlex uses a Weak Hash Function
combined with an irreversible 256:256 bit mapping to produce a
strong cryptographic function which can then be used for
designing other Stream Ciphers, Hash Functions and Block
Ciphers. The advantage of using such an approach is that if the
security properties of the underlying cryptographic function are
well established, it is much easier to establish the security of the
constructions using the function. Furthermore, it allows a large
part of the development effort to be shared and reused between
various different constructions serving different purposes and
thus reduces the overall development and implementation cost of
the final construction.

2 FASTFLEX DESIGN GOALS

The primary design goals of FastFlex were as follows:
• The cryptographic function must be considerably faster than

existing functions offering the same level of security
• It must be possible to implement the cryptographic function

on different platforms without any significant performance
penalties

• It must be possible to implement the cryptographic function
on low end smart cards and other constrained environments

• The cryptographic function must accept a key size of 192
bits.

• The cryptographic function must be suitable for use in
Stream Ciphers, Hash Functions and Block Ciphers

• The cryptographic function must have small key setup times
• The cryptographic function should not use any operations

which make it inefficient on 32-bit microprocessors
• It should be possible to implement the cryptographic

function on 8-bit microcontrollers with only 128 bytes of
RAM

• The cryptographic function should have variants with
different number of rounds to offer tradeoffs between
security and performance

Now that the primary design goals have been specified, the
structure of the cryptographic function can be described.

3 FASTFLEX BUILDING BLOCKS

The FastFlex Cryptographic Function is made up of two
subroutines:
The HashCore which iterates a specified number of times
during FastFlex depending on the security requirements, and a
Substitution Addition Network (SAN) which is a highly
nonlinear 256:256 bit mapping executing only once during
FastFlex, irrespective of the security requirements.
The input to FastFlex is the input to the HashCore. The output of
the HashCore is the input to the SAN. The output of the SAN is
the output of FastFlex.

which can be written as

HashCore

SAN

FastFlex
Input

FastFlex
Output

Fig. 1. Structure of FastFlex

{Y

W0 W1 W2 W3
W4 W5 W6 W7

Y1 = W1 ⊕ ((W0 + W3) <<< 7),
Y2 = W2 ⊕ ((Y1 + W0) <<< 13),
Y3 = W3 ⊕ ((Y2 + Y1) <<< 17),
Y0 = W0 ⊕ ((Y3 + Y2) <<< 23)

YI = (YI ⊗ YI + 4) L
YI + 4 = (YI ⊗ YI + 4)H ⊕ 8b9a746516

Y7 = W7 ⊕ ((W6 + W5) <<< 7),
Y4 = W4 ⊕ ((Y7 + W6) <<< 13),
Y5 = W5 ⊕ ((Y4 + Y7) <<< 17),
Y6 = W6 ⊕ ((Y5 + Y4) <<< 23)

Y0 Y1 Y2 Y3
Y4 Y5 Y6 Y7

Fig. 2. HashCore

3.1 HASHCORE

The HashCore is central to the design of FastFlex. The
requirements for the HashCore are as follows:
• The HashCore should be very fast and should only use

operations easily implementable on all target Hardware
and Software platforms. To this end only Word
Additions, Word XOR, Word Rotations and Word
Multiplications are used in the HashCore. Furthermore
Word Multiplications are used only in moderation where
Word Additions and Word XOR operations would either
require more time for the same level of diffusion or
would not provide the desired diffusion at all.

• The HashCore should not have a very large state. Nor
should it have large memory requirements for storage of
temporary data.

• The HashCore should have high collision resistance.
• The HashCore need not be cryptographically secure or

one-way as the irreversible 256:256 bit mapping SAN
prevents direct attacks on it.

Now that the requirements of the HashCore have been
specified, it can be defined.

The HashCore has a state size of 8 Words arranged as a 2*4
array.
Let the Initial state of the HashCore be

{ }

The transformation which works on words in the same row
can then be defined as

{ }

0,Y1,Y2,Y3} = Row(W0,W1,W2,W3)

The transformation working on the second row is
{Y6,Y7,Y4,Y5} = Row(W6,W7,W4,W5)

The second Row thus becomes

{ }

Where <<< denotes Left Rotation
And ⊕ denotes bitwise XOR

It can be seen that the second row transformation is the same as
the first row transformation with inputs {W6,W7,W4,W5} instead
of {W4,W5,W6,W7}.
The transformation which works on the words of the same
column is defined as

{ }

which can be written as
{YI,YI+4} = Col(YI,YI+4)

where ⊗denotes 32-bit Word Multiplication,
H and L denote the higher and lower words of the product.
That is 8b9a746516 is XORed with the higher word of the result
of the multiplication. The result so obtained is stored in YI+4. The
lower word of the result of the multiplication is stored in Y . I
 The result of the row transformation, followed by the column
transformation is the final state of one round of HashCore. The
final state is thus given by

{ }

The output of the present round becomes the input to the next
round till there are no more rounds of HashCore remaining.

Please see Appendix 9.4 for an example.

Unless otherwise stated, the HashCore iterates 8 times
during one round of FastFlex.

 Row Transformation

 Column Transformation

3.2 SUBSTITUTION-ADDITION NETWORK (SAN) 0X19D1E354, 0X5ABA7D79, 0XA2CC7753, 0X8C2D9655,
0X19829DA1, 0X531590A7, 0X19C1C149, 0X3D537F1C,
0X50779B69, 0XED71F2B7, 0X463C58FA, 0X52DC4418,

The Substitution-Addition Network (SAN) is a one way
substitution which serves to hide the internal state of the
FastFlex function from an attacker. It must be noted that even
though the HashCore is quite difficult to reverse, it is the
SAN which guarantees the claimed security properties of
FastFlex.

0XC18C8C76, 0XC120D9F0, 0XAFA80D4D, 0X3B74C473,
0XD09410E9, 0X290E4211, 0XC3C8082B, 0X8F6B334A,
0X3BF68ED2, 0XA843CC1B, 0X8D3C0FF3, 0X20E564A0,
0XF8F55A4F, 0X2B40F8E7, 0XFEA7F15F, 0XCF00FE21,
0X8A6D37D6, 0XD0D506F1, 0XADE00973, 0XEFBBDE36,
0X84670FA8, 0XFA31AB9E, 0XAEDAB618, 0XC01F52F5,
0X6558EB4F, 0X71B9E343, 0X4B8D77DD, 0X8CB93DA6,
0X740FD52D, 0X425412F8, 0XC5A63360, 0X10E53AD0,
0X5A700F1C, 0X8324ED0B, 0XE53DC1EC, 0X1A366795,

The SAN is constructed using a 8*32 bit S-Box, which is in
turn derived from the Skipjack F-table. Designed by the
Information Security Research Centre (ISRC) at the
Queensland University of Technology, Australia, the 8*32 S-
box is the same as is used in the Stream Cipher Proposal NLS
(Non-Linear Sober) [2], submitted to the ‘estream –Stream
Cipher Project’ [3].

0X6D549D15, 0XC5CE46D7, 0XE17ABE76, 0X5F48E0A0,
0XD0F07C02, 0X941249B7, 0XE49ED6BA, 0X37A47F78,
0XE1CFFFBD, 0XB007CA84, 0XBB65F4DA, 0XB59F35DA,
0X33D2AA44, 0X417452AC, 0XC0D674A7, 0X2D61A46A,
0XDC63152A, 0X3E12B7AA, 0X6E615927, 0XA14FB118,
0XA151758D, 0XBA81687B, 0XE152F0B3, 0X764254ED,
0X34C77271, 0X0A31ACAB, 0X54F94AEC, 0XB9E994CD,
0X574D9E81, 0X5B623730, 0XCE8A21E8, 0X37917F0B,
0XE8A9B5D6, 0X9697ADF8, 0XF3D30431, 0X5DCAC921,

The S-Box has a high degree on Non-Linearity and is not
known to possess any algebraic structure. Such an S-Box is
known to be resistant to differential and linear cryptanalysis.

0X76B35D46, 0XAA430A36, 0XC2194022, 0X22BCA65E,
0XDAEC70BA, 0XDFAEA8CC, 0X777BAE8B, 0X242924D5,
0X1F098A5A, 0X4B396B81, 0X55DE2522, 0X435C1CB8,
0XAEB8FE1D, 0X9DB3C697, 0X5B164F83, 0XE0C16376,
0XA319224C, 0XD0203B35, 0X433AC0FE, 0X1466A19A,
0X45F0B24F, 0X51FDA998, 0XC0D52D71, 0XFA0896A8,

Some key features of the 8*32 S-Box, hereafter referred to as
the Qbox are:
• High Non-Linearity of 114 0XF9E6053F, 0XA4B0D300, 0XD499CBCC, 0XB95E3D40

 • Low Imbalance
The SAN function uses a virtual S-Box constructed using the
Qbox. The Virtual S-box, Vbox, provides even higher resistance
against differential and linear cryptanalysis.

• Very Low Autocorrelation of less than 24
• 32:32 bit mapping
• No known algebraic structure

It is made up of fundamental operations which do not commute
and should thus provide resistance to a wide spectrum of attacks.

The Qbox[] is as follows:

Let us define the Vbox.
• The Vbox is a 256:256, one way bit mapping 0XA3AA1887, 0XD65E435C, 0X0B65C042, 0X800E6EF4,

0XFC57EE20, 0X4D84FED3, 0XF066C502, 0XF354E8AE,
0XBB2EE9D9, 0X281F38D4, 0X1F829B5D, 0X735CDF3C,
0X95864249, 0XBC2E3963, 0XA1F4429F, 0XF6432C35,
0XF7F40325, 0X3CC0DD70, 0X5F973DED, 0X9902DC5E,
0XDA175B42, 0X590012BF, 0XDC94D78C, 0X39AAB26B,

• The Vbox uses only fundamental operations which do not
commute

• The Vbox is designed for maximum parallelization while
maintaining a high level of security

0X4AC11B9A, 0X8C168146, 0XC3EA8EC5, 0X058AC28F,
0X52ED5C0F, 0X25B4101C, 0X5A2DB082, 0X370929E1,
0X2A1843DE, 0XFE8299FC, 0X202FBC4B, 0X833915DD,
0X33A803FA, 0XD446B2DE, 0X46233342, 0X4FCEE7C3,
0X3AD607EF, 0X9E97EBAB, 0X507F859B, 0XE81F2E2F,
0XC55B71DA, 0XD7E2269A, 0X1339C3D1, 0X7CA56B36,

A B C D
E F G H{ }

Vbox

A’ B’ C’ D’
E’ F’ G’ H’

0XA6C9DEF2, 0XB5C9FC5F, 0X5927B3A3, 0X89A56DDF,
0XC625B510, 0X560F85A7, 0XACE82E71, 0X2ECB8816,
0X44951E2A, 0X97F5F6AF, 0XDFCBC2B3, 0XCE4FF55D,
0XCB6B6214, 0X2B0B83E3, 0X549EA6F5, 0X9DE041AF,
0X792F1F17, 0XF73B99EE, 0X39A65EC0, 0X4C7016C6,
0X857709A4, 0XD6326E01, 0XC7B280D9, 0X5CFB1418,
0XA6AFF227, 0XFD548203, 0X506B9D96, 0XA117A8C0,
0X9CD5BF6E, 0XDCEE7888, 0X61FCFE64, 0XF7A193CD,
0X050D0184, 0XE8AE4930, 0X88014F36, 0XD6A87088,
0X6BAD6C2A, 0X1422C678, 0XE9204DE7, 0XB7C2E759,
0X0200248E, 0X013B446B, 0XDA0D9FC2, 0X0414A895,
0X3A6CC3A1, 0X56FEF170, 0X86C19155, 0XCF7B8A66,
0X551B5E69, 0XB4A8623E, 0XA2BDFA35, 0XC4F068CC,
0X573A6ACD, 0X6355E936, 0X03602DB9, 0X0EDF13C1,
0X2D0BB16D, 0X6980B83C, 0XFEB23763, 0X3DD8A911,
0X01B6BC13, 0XF55579D7, 0XF55C2FA8, 0X19F4196E,
0XE7DB5476, 0X8D64A866, 0XC06E16AD, 0XB17FC515,
0XC46FEB3C, 0X8BC8A306, 0XAD6799D9, 0X571A9133,
0X992466DD, 0X92EB5DCD, 0XAC118F50, 0X9FAFB226,
0XA1B9CEF3, 0X3AB36189, 0X347A19B1, 0X62C73084,
0XC27DED5C, 0X6C8BC58F, 0X1CDDE421, 0XED1E47FB,
0XCDCC715E, 0XB9C0FF99, 0X4B122F0F, 0XC4D25184,
0XAF7A5E6C, 0X5BBF18BC, 0X8DD7C6E0, 0X5FB7E420,
0X521F523F, 0X4AD9B8A2, 0XE9DA1A6B, 0X97888C02,

{ }

The Vbox consists of 4 layers of operations and is essentially a
one way mapping.

Layer 1:
A = [A + S(B) + F]
B = [B + S(C) + G]
C = [C + S(D) + H]
D = [D + S(A) + E]

Layer 2:
E = [E + S(A)]
F = [F + S(B)]

G = [G + S(C)] • We denote the FastFlex function as
H = [H + S(D)]
 {A’,B’,C’,D’,E’,F’,G’,H’} =

FastFlex(WLayer 3:
A’ = [A ⊕ S(G)]
B’ = [B ⊕ S(H)]
C’ = [C ⊕ S(E)]
D’ = [D ⊕ S(F)]

Layer 4:
E’ = [E + A’] ⊕ F
F’ = [F + B’] ⊕ G
G’ = [G + C’] ⊕ H
H’ = [H +D] ⊕ E

Where S() is defined as
S(X) = [Qbox(XH) ⊕ X]
and XH is the most significant byte of X.

 Input

Layer 1

Layer 2

Layer 3

Layer 4

 Output

Unless otherwise stated, SAN executes only once during
FastFlex.

Now that both the HashCore and the SAN have been
specified, let us summarize FastFlex:
• FastFlex takes 8 words as input and produces 8 words as

output.
• A round of FastFlex translates to 8 rounds of HashCore

followed by 1 round of SAN.
• The HashCore takes 8 words as input and produces 8

words as output.
• The SAN acts as a virtual S-Box It takes 8 words as

inputs and produces 8 words as output.
• FastFlex is guaranteed to be a one to one mapping of

256:256 bits. No collisions have been found during the
initial analysis of FastFlex.

0,W2,W5,W7,W1,W3,W4,W6)

FastFlex modifies 8 words in place.

4 FASTFLEX DESIGN JUSTIFICATIONS

• The Use of Primitive Operations: Only primitive

operations such as Word Addition, Word XOR, Word
Rotations and Word Multiplications are used in FastFlex. A
long chain of simple operations can approximate any
complex operation [4]. On the other hand, implementing
complex functions in constrained environments is difficult.
Most constrained environments, more so than not, already
have architectures for implementing simple operations such
as Addition, Xoring, Rotation and Multiplication The chain
of simple operations as used in FastFlex can thus reach the
same desired security level as of any other more complex
operation, and at the same time be implementable in
constrained environments.

• The use of Word Multiplications: Integer multiplications,

it can be argued are slow and difficult to implement in
Hardware, although on most modern general purpose
processors, they are quite fast. Some new hardware chips
such as the Xilinx Spartan 3 [5] and Altera Cyclone have
efficient multiplier architectures pre-fabricated on chip, and
this is a trend which seems to be continuing. Thus it is a
reasonable assumption that most future hardware chips will
also boast such efficient multiplication architectures and
thus the performance penalty mentioned above will soon
disappear. At present, the advantage of using word
multiplications for diffusion on general purpose processors
and the fact that future hardware chips will implement word
multiplications efficiently leaves no reason not to use them.

Fig. 3. The Virtual S-box
(V-box)

• The use of Word Rotations: It may be argued that some

microprocessors do not have efficient Word Rotations or do
not have Word Rotations at all. To overcome this, rotations
may be achieved using bit-shifts on such processors.

 X<<<Y = [(X<<Y) | (X>>32-Y)]

• Rotation Distances: The exact rotation distances do not

matter much. Rotation by any different prime amounts
should suffice.

• The use of S-boxes: An S-box provides thorough diffusion

and confusion in a single operation. S-boxes however take
up considerable memory which may increase the cache
pressure on some CPUs. Furthermore, constrained
environments may not have enough space to implement
large S-boxes. A balance is thus needed between the number
of S-boxes, the size of S-boxes and the frequency of use of
S-boxes in code. The frequency of use of S-boxes is a fact

often neglected in many implementations. S-boxes are
implemented as array lookups and using an S-box is
equivalent to fetching an element from memory. If S-
boxes are not frequently used, and they are frequently
overwritten in cache, then there can be significant
performance degradation as they will have to be fetched
from memory again. FastFlex overcomes this problem by
using only a single 8*32 S-box which requires only 1KB
of storage, and using the S-box thoroughly when it is
brought into cache.

5.1 FASTSTREAM192

FastStream192 is a synchronous keystream generator. In a
synchronous keystream generator, the sender and receiver
generate the same keystream using identical copies of the
generator and using the same key. The requirements of a good
keystream generator are as follows:
• The generated keystream should be unique for every

different key.
• The generated keystream should pass all known randomness

tests and should thus be indistinguishable from a random
message source.

• Size of the Internal State of FastFlex: FastFlex has an

internal state of 256 bits. It must be noted that a state size
of 256 bits is more than overwhelming considering the
amount of processing power available today and the
present state of cryptanalysis [6]. Only a major
breakthrough in electronics technology or cryptanalytic
techniques, if not both, will change this fact. It seems
more reasonable to use better design principles than to
increase the state size as of now.

• It should not be practical to recover the secret key by
observing the keystream corresponding to that key.

It must be noted that in theory it is not possible for any generator
to output a truly random message stream using any fixed series
of operations, no matter how complex each operation is taken to
be, if the input to the generator is not random. We suffice with
what is sufficient randomness, or pseudo randomness, as
required by the application.

• The Number of Rounds: 8 rounds of HashCore and 1
round of SAN seems to be quite conservative and as peer
confidence in FastFlex increases, the number of rounds
can be decreased. Meanwhile, decreasing the number of
rounds is not advisable.

For a stream cipher using a single key, a keystream length of
period 264 bits is considered sufficient.
Let us assume such a keystream generator G generating
keystream G . T

Known • The SAN: SAN hides the internal state of the HashCore.

This makes direct guess and determine attacks very
difficult against FastFlex.

Input

G Key

 • Why not more S-boxes: A single S-box cannot provide

the same security as provided by two or more S-boxes.
However, using additional S-boxes would have nearly
doubled the memory requirements of the FastFlex object
code. Furthermore, S-box lookups are vulnerable to
timing attacks on most platforms and there is no efficient
workaround to this [7]. S-box lookups must thus be kept
to a minimum whenever possible.

Pseudorandom

 Keystream

 Fig. 4. Keystream Generator

Encryption then takes place at the transmitter by XORing the
message to be encrypted with the corresponding Keystream
Word G

. T

5 FASTFLEX APPLICATIONS C

In this section are presented a few constructions using the
FastFlex Cryptographic Function.

The following are constructed using the FastFlex
cryptographic function:
• FastStream192: The construction of a synchronous

stream cipher providing 192 bit key security.
• FastHash256: A hash function taking input in 256 bit

blocks and producing a 256 bit message digest.
• KeyHash256: A keyed hash function producing a 256

bit message digest.

T = MT ⊕ GT
where CT is the transmitted ciphertext
corresponding to the Message MT

Decryption is done by XORing the ciphertext CT with a copy of
the corresponding keystream G’T, generated locally by the
receiver using the same key.

M’T = G’T ⊕ CT
If G’ and G are identical, then it can be seen that M’ and MT T T T
are also identical.

At first, XOR might not seem a formidable operation for
encryption, but the only theoretically secure stream cipher(or for
that matter any cipher) the One-Time Pad [8] uses XOR as the
only operation.

Now that synchronous stream ciphers have been introduced,
FastStream192 can be described.

Key (192 Bits)

N0 K0 K1 K2
K3 K4 K5 N1

N0 K0 K1 K2
K3 K4 K5 N1

A B C D
E F G H

4 Rounds of FastFlex

A B C D
E F G H

G0 G1 G2 G3
G4 G5 G6 G7

1 Round of FastFlex

At the Transmitter (Encryption):
CT = GT ⊕ MT

At the Receiver (Decryption):
MT = GT ⊕ CT

Synchronized copies of the keystream generator run at both
the transmitter and the receiver.

5.1.A KEYSTREAM GENERATION IN

FASTSTREAM192

Keystream generation in FastStream192 is done by one round
of FastFlex. The keystream generator takes two inputs, a 192
bit secret key K {K0, K1, K2, K3,K4,K5} and a 64 bit nonce N
{ N0, N1}, where K0, N0 are the least significant words of K
and N respectively.

The process of keystream generation is as follows:
• The inner state of the FastFlex is loaded with K and N as

shown below

 { }

• FastFlex is allowed to run four times with the output of

the present round becoming the inner state of FastFlex
for the next round.

 { }

 { }

• {A,B,C,D,E,F,G,H} becomes the internal state of

FastStream192. {H,A} form a 64 bit counter, with a {H}

as the higher word and {A} as the lower word of the
counter.

• The keystream generator is now ready to produce
keystream.

• A single round of FastFlex produces 8 words of keystream.

 { }
FastFlex Keystream Counter
State: 256

Bits
 G

 { }

 or in other words
 {G} = FastFlex(ABCDEFGH)

• The counter is updated for generating the next 8 words of

keystream by incrementing ah by 1. The value of the
counter to be loaded for the next round of encryption thus
becomes HA + 1.

• On generating every 8 words of keystream, the counter HA
is again incremented by 1 before generating the next words
of the keystream.

5.1.B FASTSTREAM192
 DESIGN JUSTIFICATIONS

• Key Size of 192 bits: Although it is possible to implement a

larger key size by increasing the state size of FastFlex
(FastFlex scales well to increase in size of its state), a 192
bit key seems to be quite secure for quite some time to
come. It is still impossible to brute force even a 96 bit key
being used in a secure implementation. What is required is
more resistance to cryptanalytic tools.

• Stream Independent of Plaintext and Ciphertext: The
success of many cryptanalytic attacks depends on the ability
of the cryptanalyst to induce/toggle some bits in the internal
state of the cipher. A synchronous cipher using a counter is
thus more secure against such attacks as the cryptanalyst
cannot induce bits into its internal state. Furthermore,
making the stream dependent on ciphertext forces
serialization of the cipher. A serial cipher cannot enjoy the
benefits of parallelization.

• Synchronous Cipher: For a synchronous cipher to decrypt
data correctly, perfect synchronization is required between
the transmitter and the receiver. Whenever there is any
insertion in the stream, synchronization is lost. Thus
synchronous ciphers are immune to Replay Attacks and
most Man in the Middle Attacks [9]. Any errors in
transmission when using synchronous stream ciphers are
restricted to individual bits/words and are not propagated.
This is an added advantage in some scenarios where bit
errors prevail.

64 Bits T

FastStream192

Fig. 5. FastStream192 Keystream Generator

5.1.C PERIOD OF KEYSTREAM
 FOR FASTSTREAM192

FastStream192(K,N) denotes the FastStream192 stream
cipher function acting on the 24 Byte key K and the 8 Byte
counter sequence N, N + 1,…N + (264 – 1).

Message M
256 Bit Block BBi+1 ⊕

Final Hash
256 Bits

FastStream192(192,64) can thus have a sequence length of up
to (264+8 = 272) bits, as the sequence N, N +1,… N + (264 – 1)
has a length of 264 and each round generates 8 words of
keystream. Thus it is possible to generate sequences of period
272. However Collisions may occur in FastFlex. No such
collisions have been found till now, but it is unreasonable to
assume that no collisions will be found in the future.
Following a conservative design approach, the keystream
for any given Key-Nonce Pair is thus limited to 264 bits,
which is same as the keystream period for AES for a given
128 bit key in counter mode.

5.2 FASTHASH256

FastHash256 is an Unkeyed Hash Function. An unkeyed hash
function maps a message M of arbitrary but finite length, into
a message digest of fixed length N. M >> N in most cases, a
one to one mapping is not possible and two or more inputs
are bound to produce the same hash N. When this happens a
collision has occurred. That is the hash of two or more
different messages has collided.
It is theoretically impossible to avoid collisions. Nonetheless
a few properties are expected of practical hash functions [10]:
• Given any M, it must be easy to compute N = Hash(M).
• Preimage Resistance: Given N, it must be infeasible to

find any message M such that Hash(M) = N.
• 2nd Preimage Resistance: Given a Message M, it must

be infeasible to find a Message M’ such that Hash(M) =
Hash(M’).

• Collission Resistance: It must be infeasible to find two
distinct messages M and M’ such that Hash(M) =
Hash(M’).

• Non-Correlation: The correlation between the input and
output bits of the hash function should be very low.

• Avalanche: A hash function should have good avalanche
properties such that every bit of input affects evry bit of
output.

• Partial Preimage Resistance: It should be difficult to
reconstruct any part of the message from the Hash even
if a part of the input message is known.

Now that the desirable properties of Unkeyed Hash Functions
have been listed, the specification for FastHash256 can be
given.

FastHash256 takes input messages in blocks of 256 bits in the
form of 8 words and produces as output a Hash of 256 bits in
the form of 8 words. Messages are appended with a right
justified binary representation of the length of the original
message in bits prior to hashing (Merkle-Damgârd

Strengthening [11]). If the length of the message is such that the
last block cannot be appended with the length of the message,
then the last block is padded with zero and an additional block is
inserted, following which Merkle-Damgârd Strengthening can
be applied.

 Hash

FastFlex 256 Bits
State: 256 Bits

FastHash256

Fig. 6. FastHash256

which can be written as

Hash = FastHash256(M’)

where M’ is the Message M after MD-strengthening. The
procedure for MD-strengthening is as follows:
• The original Message M is divided into (N -1) 256 bit

blocks B0, B1,...BN-1.
• A length of the Message in bits is appended to the last block

BBN-1. A more thorough explanation of MD-strengthening
can be found in [12].

• If the last block cannot hold the length of the message in
bits, it is appended with 0’s and an additional block is added
which is right appended with the Message length in bits.
That is, if the bits of the block are {b0,b1,…b255}, and if K
bits are required to represent the Message length, the last
message block becomes {b0,b1,…b255-K}. If the last message
block cannot hold K additional bits, an additional block of
all 0’s is appended to the original message M. The last
message block then becomes {0,0,...K bits}.

• As a matter of convention, the length K is taken as the word
length, that is 32-bits and is appended as 4-bytes in Little
Endian.

FastHash256 uses a single iteration of FastFlex. After hashing
block BBi, the hash obtained is xored with the next block Bi+1B till
there are no more blocks remaining.
Hash = FastHash256(BBi ⊕ FastHash256(Bi-1 B

⊕ FastHash256(BB1-2 ⊕ FastHash256(Bi-3 ⊕…)))) B

6 WEAKFLEX

Y1 = W1 ⊕ (W0 + W3) <<< 1
Y2 = W2 ⊕ (Y1 + W0) <<< 3
Y3 = W3 ⊕ (Y2 + Y1) <<< 5
Y0 = W0 ⊕ (Y3 + Y2) <<< 8

YI = (YI ⊗ YI + 4) & 0x00FF
YI + 4 = S(YI ⊗ YI + 4)

WeakFlex8 is an intentionally weakened version of FastFlex for
analysis in academic circles. WeakFlex8 uses a key size of 32
bits, manipulates 8 bit bytes instead of 32 bit words.

• The present 8 byte output of HashCore becomes the input
for the next round, till no more blocks remain

HashCore

SAN

8 Byte Output

8 Byte Input

The two differences in the structure of WeakFlex8 and FastFlex
are:

• Rotation distances in the Row() function of HashCore and
in the SAN.

• Use of an 8*8 S-box derived from Skipjack instead of a
8*32 S-box as building block of the Virtual S-box.

It should be noted that the structure of FastFlex has not been
changed. The numbers of rounds of the HashCore remain the
same in WeakFlex8. However, the 48 bit key used in the stream
cipher constructed using WeakFlex8 should make cryptanalysis
considerably easier and lend more insight into the security
properties of FastFlex.

Fig. 8. WeakFlex8 6.1 WEAKFLEX8

Being already familiar with the design of FastFlex, we now
describe WeakFlex8.

• The HashCore of WeakFlex8 takes as input eight 8-bit

bytes and as output produces eight 8-bit bytes.

The SAN uses a 8*8 S-box derived from Skipjack (F-Table)
[14]. The key features of the S-box are:
• High Nonlinearity
• 8:8, one to one bit mapping
• No known algebraic structure • The Row() function of HashCore in WeakFlex8 is:

 • 39.9% entries have non zero elements.
{Y0,Y1,Y2,Y3} = Row(W0,W1,W2,W3)
where The S-box[] is as follows:

 { }

0XA3 0XD7 0X09 0X83 0XF8 0X48 0XF6
0XF4 0XB3 0X21 0X15 0X78 0X99 0XB1
0XAF 0XF9 0XE7 0X2D 0X4D 0X8A 0XCE
0X4C 0XCA 0X2E 0X52 0X95 0XD9 0X1E
0X4E 0X38 0X44 0X28 0X0A 0XDF 0X02
0XA0 0X17 0XF1 0X60 0X68 0X12 0XB7
0X7A 0XC3 0XE9 0XFA 0X3D 0X53 0X96
0X84 0X6B 0XBA 0XF2 0X63 0X9A 0X19
0X7C 0XAE 0XE5 0XF5 0XF7 0X16 0X6A
0XA2 0X39 0XB6 0X7B 0X0F 0XC1 0X93
0X81 0X1B 0XEE 0XB4 0X1A 0XEA 0XD0
0X91 0X2F 0XB8 0X55 0XB9 0XDA 0X85
0X3F 0X41 0XBF 0XE0 0X5A 0X58 0X80
0X5F 0X66 0X0B 0XD8 0X90 0X35 0XD5
0XC0 0XA7 0X33 0X06 0X65 0X69 0X45
0X00 0X94 0X56 0X6D 0X98 0X9B 0X76
0X97 0XFC 0XB2 0XC2 0XB0 0XFE 0XDB
0X20 0XE1 0XEB 0XD6 0XE4 0XDD 0X47
0X4A 0X1D 0X42 0XED 0X9E 0X6E 0X49
0X3C 0XCD 0X43 0X27 0XD2 0X07 0XD4
0XDE 0XC7 0X67 0X18 0X89 0XCB 0X30
0X1F 0X8D 0XC6 0X8F 0XAA 0XC8 0X74
0XDC 0XC9 0X5D 0X5C 0X31 0XA4 0X70
0X88 0X61 0X2C 0X9F 0X0D 0X2B 0X87
0X50 0X82 0X54 0X64 0X26 0X7D 0X03
0X40 0X34 0X4B 0X1C 0X73 0XD1 0XC4
0XFD 0X3B 0XCC 0XFB 0X7F 0XAB 0XE6
0X3E 0X5B 0XA5 0XAD 0X04 0X23 0X9C

Fig

and + denotes addition Mod 28,
 ⊕ denotes bitwise XOR

x<<< y denotes left rotation of byte x by y positions.

• The transformations on elements in the same row are
{Y0,Y1,Y2,Y3} = Row(W0,W1,W2,W3)
{Y6,Y7,Y4,Y5} = Row(W6,W7,W4,W5)

• This is followed by transformations on elements in the
same column,
{YI,YI+4} = Col(YI,YI+4)

where

 { }

• The HashCore iterates 8 times during a round of

WeakFlex8.
• The SAN for WeakFlex8 is defined as a 64:64 bit

mapping.
• The SAN executes only once during a round of

WeakFlex8.

16 Bit

0X14 0X51 0X22 0XF0 0X29 0X79 0X71
0X7E 0XFF 0X8C 0X0E 0XE2 0X0C 0XEF
0XBC 0X72 0X75 0X6F 0X37 0XA1 0XEC
0XD3 0X8E 0X62 0X8B 0X86 0X10 0XE8
 0X08 0X77 0X11 0XBE 0X92 0X4F
 0X24 0XC5 0X32 0X36 0X9D 0XCF
 0XF3 0XA6 0XBB 0XAC 0X5E 0X6C
 0XA9 0X13 0X57 0X25 0XB5 0XE3
 0XBD 0XA8 0X3A 0X01 0X05 0X59
 0X2A 0X46

where
S-box(N) is the to the Nth entry in S-box[],
+ denotes addition Mod 28 and
⊕ denotes bitwise XOR

Let us summarize the design of WeakFlex8:
• WeakFlex8 operates on eight 8-bit bytes.
• WeakFlex8 accepts 8 bytes as input and produces 8 bytes as

output for every round.
The SAN is a one way 64:64 bit mapping. It consists of four
layers of operations which do not commute. The structure of
the SAN is as follows:

• A round of WeakFlex8 corresponds to 8 rounds of
HashCore and 1 round of SAN.

 We now construct a stream cipher providing 48 bit security

using WeakFlex8. Input

Layer 1 6.2 WEAKSTREAM48

 WeakStream48 is a deliberately weakened synchronous stream

cipher structurally similar to FastStream192. Keystream
generation in WeakStream48 is done by one round of
WeakFlex8. The keystream generator takes two inputs, a 48 bit
secret key K {K

Layer 2

Layer 3

Key (48 Bits)

WeakStream48

Fig. 10. WeakStream48

Layer 4

Output

Layer 1:
A = [A + S-box(B) + F]
B = [B + S-box(C) + G]
C = [C + S-box(D) + H]
D = [D + S-box(A) + E]

Layer 2:
E = [E + S-box(A)]
F = [F + S-box(B)]
G = [G + S-box(C)]
H = [H + S-box(D)]

Layer 3:
A’ = [A ⊕ S-box(G)] B’ = [B ⊕ S-box(H)]
C’ = [C ⊕ S-box(E)] D’ = [D ⊕ S-box(F)]

Layer 4:
E’ = [E + A’] ⊕ F
F’ = [F + B’] ⊕ G
G’ = [G + C’] ⊕ H
H’ = [H +D] ⊕ E

0, K1, K2, K3 K4, K5} and a 16 bit nonce N {N0,
N1}, where K0, N0 are the least significant bytes of K and N
respectively.
It must be noted that FastStream192 and WeakStream48 are
identical in structure. The differences between them are as
follows:
• WeakStream48 accepts a 48 bit key and a 16 bit nonce

whereas FastStream192 accepts a 192 bit key and a 64 bit
nonce.

• WeakStream48 produces keystream 8 bytes at a time,
whereas FastStream 192 produces keystream 8 words at a
time.

• For a given key-nonce pair, WeakStream48 can be used to
generate 222 bits of keystream, whereas for FastStream192
264 bits of keystream can be generated uing a given key-
nonce pair. A longer keystream is generated so as to allow
thorough study of its properties.

Keystream Counter WeakFlex8
G16 Bits State: 64 Bits T

At the Transmitter (Encryption): which can be written as
{G} = wEAKFlex8(A,B,C,D,E,F,G,H)

N0 K0 K1 K2
K3 K4 K5 N1

A B C D
E F G H

4 Rounds of WeakFlex8

A B C D
E F G H

A B C D
E F G H

G0 G1 G2 G3
G4 G5 G6 G7

1 Round of WeakFlex8

N0 K0 K1 K2
K3 K4 K5 N1

CT = GT ⊕ MT

At the Receiver (Decryption): • The counter is updated for generating the next 8 bytes of
keystream by incrementing GHAB by 1. The value of the
counter to be loaded for the next round of encryption thus
becomes GHAB + 1.

MT = GT ⊕ CT

where M denotes the message stream, T

• On generating every 8 bytes of keystream, the counter is
again incremented by 1 before generating the next bytes of
the keystream.

GT denotes the keystream
and C denotes the corresponding ciphertext stream. T

6.2.A KEYSTREAM GENERATION IN

WEAKSTREAM48 6.2.B PERIOD OF KEYSTREAM FOR
 WEAKSTREAM48

Keystream is generated in WeakStream48 following the same
approach as used in FastStream192. Each round of
WeakStream48 uses 1 round of WeakFlex8. The keystream
generator takes two inputs, a 48 bit secret key K {K

WeakStream48(K,N) denotes the WeakStream48 stream
cipher function acting on the 6 Byte key K and the 4 Byte
sequence N, N + 1,…N + (20, K1, K2,

K
32 – 1).

3,K4,K5} and a 16 bit nonce N { N0, N1 }, where K0, N0 are
the least significant bytes of K and N respectively.

WeakStream48 thus has a period of 232, as the counter rolls
over to its initial value after 232 increments, as (N+232) mod
2The process of keystream generation is as follows: 32 = N

• The inner state of the WeakFlex8 is loaded with K and N
as shown below

There may be collisions in the keystream and the purpose of
WeakStream48 is to study the nature, predictability and
frequency of occurrence of such collisions. { }

 • WeakFlex8 is allowed to run four times with the output

of the present round becoming the inner state of
WeakFlex8 for the next round.

7 COMPARISONS WITH AES

AES [15] has been the mainstay encryption algorithm for about
3 years now. It has been thoroughly analyzed and even more
thoroughly optimized for high performance on a wide variety
of platforms, including the AMD Athlon and a Pentium IV.
The fastest AES Stream Cipher Implementation in software is
reported to take 18 cycles/byte [16]. It however refers to
unpublished software which provides no protection against
timing attacks. An implementation providing protection against
timing leaks should take considerably longer. Our in-house
tests suggest encryption at around 24 cycles/byte on an AMD
Athlon 2400+ XP Processor Model 8 and at around 23
cycles/byte on an Intel Pentium IV 2.4 GHz. However, it must
be noted that the said AES implementation provides only 128-
bit key security whereas FastStream192 provides 192-bit key
security.

 { }

 { }

• The Inner State of WeakFlex8 is loaded with

{A,B,C,D,E,F,G,H} as follows:

 { }
 FastStream192 takes 10 cycles/byte for the optimized assembly

implementation and 12 cycles/byte for the reference C
implementation when encrypting a 32 byte block with a 24 byte
key on an AMD Athlon 2400+ XP Processor Model 8 [17]. No
key expansion is necessary as in AES. No lookup tables need to
be pre-calculated and only one 1KB s-box is used.

The keystream generator is now ready to produce keystream.

• A single round of WeakFlex8 is then called which

produces 8 bytes of keystream.

 { } On the Pentium IV 2.4 GHz [18], at about 15 cycles/byte for
the optimized assembly implementation and 16.8 cycles/byte
for the Reference C implementation, FastStream192 takes
considerably longer than on an AMD Athlon. This is due to the
fact that the Pentium IV is somewhat sluggish when it comes to
integer multiplication.

 { }

FastHash256 performs considerably faster than AES Hash
on all platforms, at around 11.4 cycles/byte for our reference
C implementation on an AMD Athlon 2400 + XP Processor
Model 8 and at around 16.2 cycles/byte on an Intel Pentium
IV. AES Hash takes 30 cycles/byte and 27 cycles/byte
respectively on the above platforms [19].

The performance results for constructions using FastFlex for
the reference C implementation can be summed up as
follows.

Function Block Size Key Size Cycles/Byte
A32, A64, PIV

AESHash 128 b 30, -, 27
AES Stream 128 b 128 b 24, -, 23
FastHash256 256 b 11.4, 10.6, 16.2
FastStream 192 256 b 256 b 12, 11.3, 16.8

Table 1. Comparison with AES

QuickStream192, a reduced round variant was also developed
for applications requiring very high speed encryption. We can
formally define FastFlex as (HashCore)8.(SAN). That is 8
iterations of the HashCore followed by a single iteration of the
SAN. QuickFlex is then (HashCore)4.(SAN), that is 4
iterations of the HashCore followed by a single iteration of the
SAN. It should be noted that as of now both FastFlex and
QuickFlex are secure by some margin. Our efforts at
cryptanalysis have not been able to break more than 2
iterations of HashCore.

The performance results for QuickStream192 using
QuickFlex for the reference C implementation are quite
impressive at around 7.3 cycles/byte on an AMD Athlon
2400+ XP Processor Model 8 and at around 10.8 cycles/byte
on an Intel Pentium IV 2.4 GHz. In other words, the reference
C implementation of QuickStream192 can encrypt a stream at
about 3.18 Gbps on an Athlon XP 2400+.

8 CONCLUSIONS

A New Fast and Flexible Cryptographic Function, FastFlex
has been presented for peer review in this paper.
It has been used to construct a stream cipher and a hash
function.
The stream cipher FastStream192 constructed using FastFlex
is significantly faster than AES in counter mode by about 12
cycles/byte on an AMD Athlon and 2 cyles/byte on an Intel
Pentium IV. The performance degradation on the Pentium IV
may be attributed to the fact Integer Multiplication is
considerably slower on Pentium IV as compared to AMD
Athlon [20].
The keystream generated by FastStream192 has been analysed
thoroughly for any known statistical weaknesses using the
NIST Statistical Test Suite (NIST PUB 800-022) and no
weaknesses have been found in the keystream. Furthermore,

the generated keystream has on average better if not the same
statistical randomness as the output of a DRBG using SHA512
(DRBG-SHA512), provided in the NIST test suite itself.

It is hereby declared that the author has not deliberately
inserted any trapdoors in FastFlex, FastStream192,
FastHash256 and KeyHash256.

The weakened version of FastFlex, WeakFlex8 should only
be used for academic purposes. No security claims are
made regarding the security of the same.

If at all used, WeakFlex8 should only be expected to
provide a key security of 48 bits.

9 APPENDICES

9.1 DEFINITIONS

Encryption: The process of obscuring the information
contained in a message in an efficient manner such that only
users with the right key to that information can recover the
original information. To anyone not having a valid key, the
encrypted message should be indistinguishable from a
random permutation of bits.

Key: A secret password used to encrypt or decrypt
messages. A common secret key is shared between the
endpoints in symmetric encryption. In an ideal encryption
scheme, all security lies only in the key.

Nonce: A Number Used Only Once, usually paired with a
secret key. A nonce need not be random and no security lies
in it. It can be declared publicly and is often used as an
initialization value for the encryption scheme. The
advantage of using a nonce is that in case of loss of
synchronization between the endpoints of communication,
resynchronization may be achieved by transmitting only a
new nonce and not the new key.

Stream Cipher: A deterministic algorithm which produces
a sequence, usually referred to as keystream, from key and
(an optional) nonce, in a manner independent of plaintext.
The keystream is later combined with plaintext in a simple,
key-independent, and nonce-independent manner to produce
ciphertext. A streamcipher should be so that, under the
assumption that it is properly used, even if some parts of the
plaintext corresponding to (multiple-session) ciphertexts are
revealed, no information about unrevealed plaintext
corresponding to the rest of the ciphertexts can be deduced.

Hash Function: A hash function H is a transformation that
takes a variable-size input m and returns a fixed-size string,
which is called the hash value h (that is, h = H(m)). Hash
functions with just this property have a variety of general
computational uses, but when employed in cryptography the
hash functions are usually chosen to have some additional
properties.

S-box: A substitution which returns a seemingly unrelated
value for any input given to it. S-boxes are used in ciphers
to obscure the relationship between plaintext and ciphertext.

Plaintext: The original message acted upon by the
encryption scheme to produce corresponding ciphertext,
from which information contained in the plaintext can only
be recovered with the same key as used to encrypt the
message.

9.2 CRYPTANALYSIS OF FASTFLEX

In this section relevant cryptanalytic techniques are discussed
with their possible application to FastFlex (if any).

9.2.A LINEAR CRYPTANALYSIS

Linear cryptanalysis [21] is a known plaintext attack that uses a
linear relation or relations between inputs and outputs of the
encryption algorithm that hold with a certain probability. This
approximation can be used to assign probabilities to the possible
keys and locate the most probable one.
There however do not seem exist any simple linear relations
between the inputs and the outputs of FastFlex.

9.2.B DIFFERNTIAL CRYPTANALYSIS

Differential cryptanalysis [22] involves finding some pairs of
plaintext {W,W’} with a small difference such that they produce
a small difference in the corresponding output ciphertext
{Y,Y’}. FastFlex as used in FastStream192 accepts a 2 word
input (Only two words of the counter change) and produces 8
words as output. It seems unreasonable to find any input pair
{W,W’} such that the corresponding output {Y,Y’} also has a
small difference. This is because while there are only (264)
choices for the input, there are (2256) choices for the output
differences. The probability of finding a low difference in both
input and corresponding output is equivalent to finding a low
difference input pair in 264 which has a corresponding low
difference in 2256. Now if we assume that FastHash is a one to
one mapping (or a near one to one mapping with a small number
of collissions), the 264 inputs will map to only the corresponding
264 outputs spread across 2256

 possible outputs of FastFlex. The
possibility of a low difference being carried over from an input
pair to the corresponding output pair is thus very low.

9.2.C SLIDE ATTACKS

Slide Attacks [23] compare the present state of the cipher to the
next state. Fortunately, the two states of the 2*4 matrix (denoted
M) in the HashCore do not have the property that Col(Row(M))
= Col(Col(MT)) = Row(Row(MT))
Slide attacks are thus not possible as there is no simple
relationship between the present and the next state of FastFlex.

9.3 STATISTICAL TESTING OF
FASTSTREAM92 KEYSTREAM

Ciphertext is generated in FastStream92 by XORing plaintext
with corresponding keystream bits. The generated keystream
should thus satisfy known tests for randomness for it to
withstand statistical analyses by adversaries, to whom the
ciphertext should appear indistinguishable from a random
sequence.

The keystream generated using FastStream192 was subjected
to thorough tests using the NIST Statistical Test Suite [24],
which was used by the NIST during the development and
testing phase of AES [25], to test the keystreams generated
by the block cipher proposals for statistical weaknesses.
FastStream192 was compared with DRBG-SHA512 [26, 27,
28], an excellent random sequence generator. A detailed
description of the technical background of the tests and the
conventions used can be found in [24].

9.3.1 MONOBIT TEST

The purpose of this test is to determine whether the number
of ones and zeros in a sequence are approximately the same
as would be expected for a truly random sequence.

(Only Reports Number of Streams Failed on average in 1000
independent tests with random keys)
b: Bits, B: Bytes

StreamLength /
No. of Streams

DRBG
SHA512

FastStream192

256b/1000 10, 1% 9, 0.9%
512b/1000 6, 0.6% 7, 0.7%
4KB/1000 15, 1.5% 9, 0.9%
8KB/1000 10, 1% 5, 0.5%
1MB/100 2, 2% 0, 0%
1GB/1 - 0, 0%

Table 2. Monobit Test

9.3.2 RUNS TEST

The purpose of the runs test is to determine whether the
number of runs of ones and zeros of various lengths is as
expected for a random sequence. In particular, this test
determines whether the oscillation between such substrings is
too fast or too slow and is the observed oscillation what
would be expected in a truly random sequence.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

256b/1000 12, 1.2% 10, 1%
512b/1000 7, 0.7% 6, 0.6%
4KB/1000 9, 0.9% 10, 1%
8KB/1000 17, 1.7% 12, 1.2%
1MB/100 2, 2% 1, 1%

Table 3. Runs Test

9.3.3 LONGEST RUN OF ONES TEST

The purpose of this test is to determine whether the longest run
of ones within the tested sequence is consistent with the longest
run of ones that would be expected in a random sequence.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

1MB/100 1, 1% 1, 1%

Table 4. Longest Run of Ones Test

9.3.4 BINARY MATRIX RANK TEST

The purpose of this test is to check for linear dependence among
fixed length substrings of the original sequence.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

8KB/1000 10, 1% 9, 0.9%
1MB/100 1, 1% 1, 1%

Table 5. Binary Matrix Rank Test

9.3.5 DISCRETE FOURIER TRANSFORM TEST

The focus of this test is the peak heights in the Discrete Fourier
Transform of the sequence. The purpose of this test is to detect
periodic features (i.e., repetitive patterns that are near each other)
in the tested sequence that would indicate a deviation from the
assumption of randomness. The intention is to detect whether the
number of peaks exceeding the 95 % threshold is significantly
different than 5 %.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

4KB/1000 14, 1.4% 6, 0.6%
8KB/1000 8, 0.8% 7, 0.7%
1MB/100 2, 2% 1, 1%

Table 6. Discrete Fourier Transform Test

9.3.6 CUMULATIVE SUMS TEST

The purpose of the cumulative sums test is to determine
whether the sum of the partial sequences occurring in the
tested sequence is too large or too small.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

256b/1000 9, 0.9% 13, 1.3%
512b/1000 11, 1.1% 16, 1.6%
4KB/1000 29, 2.9% 13, 1.3%
8KB/1000 23, 2.3% 14, 1.4%
1MB/100 3, 3% 0, 0%

Table 7. Cumulative Sums Test

9.3.7 RANDOM EXCURSIONS TEST

The purpose of this test is to determine if the number of visits
to a state within a random walk exceeds what one would
expect for a random sequence.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

1MB/100 5, 5% 2, 2%

Table 8. Random Excursions Test

9.3.8 RANDOM EXCURSIONS VARIANT TEST

The purpose of this test is to detect deviations from the
distribution of the number of visits of a random walk to a
certain state. Due to the computationally expensive nature of
this test, it could only be conducted on a limited number of
keystream samples.

Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

1MB/100 6, 6% 5, 5%

Table 9. Random Excursions Variant Test

9.3.9 NON OVERLAPPING TEMPLATE MATCHING

TEST

The purpose of this test is to reject sequences that exhibit too
many occurrences of a given non-periodic (aperiodic) pattern.
The results of this test can be downloaded from
fastflex.sourceforge.net

9.3.10 OVERLAPPING TEMPLATE MATCHING TEST

The purpose of this test is to reject sequences that show
deviations from the expected number of runs of ones of a given
length.
The results of this test can be downloaded from
fastflex.sourceforge.net

9.3.11 LINEAR COMPLEXITY TEST

The focus of this test is the length of a linear feedback shift
register (LFSR). The purpose of this test is to determine whether
or not the sequence is complex enough to be considered random.
Random sequences are characterized by longer LFSRs. An
LFSR that is too short implies non-randomness.

(Only Reports P Value for M = 512)
b: Bits, B: Bytes

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

128KB/1000 0.41205 0.48388
1MB/100 0.50671 0.56059
8MB/50 0.82407 0.82721

Table 10. Linear Complexity Test

9.3.12 SERIAL TEST

The focus of this test is the frequency of all possible overlapping
m-bit patterns across the entire sequence. The purpose of this test
is to determine whether the number of occurrences of the 2m, m-
bit overlapping patterns is approximately the same as would be
expected for a random sequence. Random sequences have
uniformity; that is, every m-bit pattern has the same chance of
appearing as every other m-bit pattern.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

1 0 0 0
1 0 0 0

10208811,80,1020000,41000020
1,20000,800100,0

10208811,100000,10200000,0
8b9a7465, 8b9a7465, 8b9a7c75, 8b9a7465

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

256b/1000 13, 1.3% 14, 1.4%
512b/1000 14, 1.4% 12, 1.2%
4KB/1000 26, 2.6% 20, 2%
8KB/1000 23, 2.3% 16, 1.6%
1MB/100 1, 1% 1, 1%

Table 11. Serial Test

9.3.13 APPROXIMATE ENTROPY TEST

The purpose of this test is to determine whether the number
of occurrences of m-bit overlapping patterns is approximately
the same as would be expected for a random sequence.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes , M = 8, 8, 16

StreamLength / No.
of Streams

DRBG
SHA512

FastStream192

4KB/1000 16, 1.6% 12, 1.5%
8KB/1000 13, 1.3% 18, 1.1%
1MB/100 6, 6% 3, 3%

Table 12. Approximate Entropy Test

9.3.14 MAURER’S “UNIVERSAL STATISTICAL” TEST

The focus of this test is the number of bits between matching
patterns (a measure that is related to the length of a
compressed sequence). The purpose of the test is to detect
whether or not the sequence can be significantly compressed
without loss of information. A significantly compressible
sequence is considered to be non-random.

(Only Reports Number of Streams Failed)
b: Bits, B: Bytes

StreamLength / No.
of Streams, L

DRBG
SHA512

FastStream192

64KB/1000, 6 15, 1.5% 19, 1.9%
128KB/1000, 7 23, 2.3% 9, 0.9%
256KB/1000, 8 16, 1.6% 16, 1.6%
1MB/100 2, 2% 0, 0%

Table 13. Universal Statistical Test

9.3.15 .7Z Compression Test

7z is a new archive format, providing a high compression
ratio. A truly random sequence should not have any

redundancy and thus should not be compressible. The purpose of
this test was to compress large volumes of keystream generated
using FastStream192 and see if any redundancy was found.
Dictionary Size: 64 MB
Method: LZMA

b: Bits, B: Bytes

StreamLength / No.
of Streams

Compressed Size

64KB/1000 64.1 MB
128KB/1000 128.1 MB
1MB/1000 1000.1 MB
1GB/10 10.0001 GB

Table 14. .7Z Test

9.3 FASTFLEX EXAMPLE

HashCore
Round 1:
Initial State:

{ }

Row(1,0,0,0) =
{10208811, 80, 102000, 41000020}

Row(0,0,1,0) =
{800100, 0, 1, 20000}

After Row transformations:

{ }

Col(10208811,1) =
{10208811, 8b9a7465}

Col(80,20000) =
{1000000, 8b9a7465}

Col(102000,800100) =
{10200000, 8b9a7c75}

Col(41000020,0) =
(0, 8b9a7465)

After Round 1:

{ }

REFERENCES

[1] Dr. Daniel J Bernstein
The Salsa 20 Specification,
cr.yp.to, ecrypt.eu.org/stream

[7] Dr. Daniel J Bernstein
Cache Timing Attacks on AES,
cr.yp.to

[2] Hawkes, Paddon, Rose, de Vries
Primitive Specification for NLS
ecrypt.eu.org/stream

[3] E-Stream Project,
Call for Stream Cipher Proposals,
ecrypt.eu.org/stream

[4] D.J. Wheeler, R.J. Needham
The Tiny Encryption Algorithm,
FSE ‘94

[5] The Xilinx Spartan III E
Tech Report,
xilinx.com

[6] UCL Crypto Group
Cryptanalysis of Block Ciphers : A Survey
dice.ucl.ac.be/crypto/

[8] Kahn on Codes
Macmillan Publishing Co, 1967

[9] Bruce Schneier
Applied Cryptography,
John Wiley & Sons, 1996

[11] R.C. Merkle
A Digital Signature Based on a Conventional Encryption
Function,
Crypto ’87

[10] R.C. Merkle
A Fast Software One-Way Hash Function,
Crypto ‘90

[12] MD5 Message Digest
RFC 1321

[13] B.S. Kaliski
A Survey of Encryption Standards,
IEEE Micro vol. 13, Dec. 1993

[14] NIST
Skipjack and KEA Algorithm Specifications,
csrc.nist.gov/encryption/skipjack-kea.htm

[15] NIST
Announcing Development of a Federal Information Standard for
Advanced Encryption Standard,
Federal Register, v. 62, n. 1, 2 Jan 1997

[16] AES Speed
E-Stream Performance Benchmarks
www.ecrypt.eu.org/stream/perf/#results

[17] AMD Processors x86 Code Optimization Guide
Vol. 1, Vol. 2 & Vol. 3,
amd.com

[18] Intel Architecture, Software Development Manual
Vol. 2,
intel.com

[19] E-Stream Performance Benchmarks
www.ecrypt.eu.org/stream/perf/#results

[20] The New AMD A64 Processor
cpuid.com

[21] Linear Cryptanalysis Method for DES Cipher
M. Matsui,
Eurocrypt ‘93

[22] Differential Cryptanalysis of DES-Like Cryptosystems
E. Biham, A. Shamir,
Crypto ‘90

[23] Alex Biryukov, David Wagner
Slide Attacks,
FSE ’99

[24] NIST
PUB800-22, NIST Statistical Test Suite for Testing of Random
& Pseudo Random Number Generators

[25] NIST
Federal Information Standard, Advanced Encryption Standard,
nist.gov

[26, 27, 28] [FIPS140-1, FIPS 180-1, FIPS 186] Federal
Information Processing Standards

http://www.ecrypt.eu.org/

